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Abstract

The Amblyomma maculatum Koch group of ixodid ticks consists of three species: A. maculatum, 

A. triste, and A. tigrinum. However, since Koch described this group in 1844, the systematics 
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of its members has been the subject of ongoing debate. This is especially true of A. maculatum 
and A. triste; recent molecular analyses reveal insufficient genetic divergence to separate these 

as distinct species. Further confounding this issue is the discovery in 2014 of A. maculatum 
group ticks in southern Arizona, USA that share morphological characteristics with both A. 
triste and A. maculatum. To biologically evaluate the identity of Amblyomma maculatum group 

ticks from southern Arizona, we analyzed the reproductive compatibility between specimens of 

A. maculatum group ticks collected from Georgia and southern Arizona, USA. Female ticks 

from both Arizona and Georgia were mated with males from both the Georgia and Arizona 

Amblyomma populations, creating 2 homologous and 2 heterologous F1 cohorts of ticks: GA 

♀/GA ♂, AZ ♀/AZ ♂, GA ♀/AZ ♂, and AZ ♀/GA ♂. Each cohort was maintained separately into 

the F2 generation with F1 females mating only with F1 males from their same cohort. Survival 

and fecundity parameters were measured for all developmental stages. The observed survival 

parameters for heterologous cohorts were comparable to those of the homologous cohorts through 

the F1 generation. However, the F1 heterologous females produced F2 egg clutches that did not 

hatch, thus indicating that the Arizona and Georgia populations of A. maculatum group ticks 

tested here represent different biological species.
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Introduction

The taxonomic relationships among the Amblyomma maculatum tick group have been 

contested and dynamic for more than 175 years since Koch initially described several 

species belonging to this group (Koch 1844, Kohls 1956). Former members include 

Amblyomma rubripes Koch, 1844, Amblyomma ovatum Koch, 1844, Amblyomma 
parvitarsum Neumann, 1901, Amblyomma neumanni Ribaga, 1902, and multiple other taxa 

which have since been collapsed in synonymy (Kohls 1956, Camicas et al. 1998). The most 

recent analysis defines only three valid species: A. maculatum Koch, 1844, Ambylomma 
triste Koch, 1844, and Amblyomma tigrinum Koch, 1844 (Estrada-Peña et al. 2005). While 

A. tigrinum is morphologically distinct, A. triste and A. maculatum are extremely difficult to 

separate morphologically and are distinguished by relatively few diagnostic features, though 

geographical data has historically proven useful in separating these species due to their 

largely allopatric distributions (Estrada-Peña et al. 2005, Mertins et al. 2010).

Amblyomma maculatum are aggressive human biters and are the primary vectors in the 

United States of Rickettsia parkeri, the causative agent of an emerging rickettsiosis that 

causes a disease of humans similar to but typically milder than that caused by Rickettsia 
rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF) (Paddock et al. 

2008, Teel et al. 2010, Paddock and Goddard 2015). To date, no known fatalities have been 

reported from infection with R. parkeri. All stages of A. maculatum will parasitize humans 

(Goddard 2002, Paddock and Goddard 2015, Portugal and Goddard 2016), and R. parkeri 
infects adult A. maculatum at frequencies that generally range from 20% to 40% in the 

United States (Fornadel et al. 2011, Varela-Stokes et al. 2011, Wright et al. 2011, Ferrari et 
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al. 2012, Jiang et al. 2012, Nadolny et al. 2014, Pagac et al. 2014, Trout Fryxell et al. 2015, 

Lee et al. 2016, Mays et al. 2016, Allerdice et al. 2017).

Amblyomma triste are Neotropical ticks most commonly reported from Argentina, Brazil, 

Uruguay, and Venezuela (Guglielmone et al. 2006, Venzal et al. 2008, Nava et al. 2011, 

Melo et al. 2015) and are considered important vectors of R. parkeri in Argentina and 

Uruguay (Conti-Díaz et al. 2009, Portillo et al. 2013) (Venzal et al. 2004, Silveira et 

al. 2007, Nava et al. 2008, Romer et al. 2011, Melo et al. 2015). Until recently, the 

northernmost collections of A. triste have been reported from the Mexican states of Coahuila 

and Sonora (Guzmán-Cornejo et al. 2006). In 2010, Mertins et al. reported the recovery 

of an A. triste tick from cattle entering the United States from Mexico. A subsequent 

examination of archival tick specimens identified as A. maculatum and submitted to the 

United States Department of Agriculture (USDA) as part of the National Tick Surveillance 

Program revealed 15 specimens with morphological features of A. triste. An additional 

12 new records of A. triste were submitted from several counties in Arizona, Texas, and 

Coahuila between 2004 – 2009 (Mertins et al. 2010).

In 2016, two cases of R. parkeri rickettsiosis were described in patients who had acquired 

tick bites in a mountainous region in southern Arizona that abuts the United States-Mexico 

border (Herrick et al. 2016). Ticks identified as A. triste based on their scutal ornamentation, 

leg armatures, and festoons (Jones 1972, Mertins et al. 2010, Guzmán-Cornejo et al. 2011, 

Martins et al. 2014) were associated with both cases. Subsequent field surveys identified R. 
parkeri-infected Amblyomma ticks from this region and other proximate sites in southern 

Arizona, New Mexico (Allerdice et al. 2017, Hecht et al. 2020), and west Texas (Paddock 

et al. 2020). These specimens were noted to possess morphological features of both A. 
maculatum and A. triste, precluding a definitive morphological assignment to either species 

(Allerdice et al. 2017, Lado et al. 2018). A recent evaluation of mitochondrial and nuclear 

gene sequences of these and other members of the A. maculatum group suggests that A. 
triste and A. maculatum are not sufficiently divergent to separate as species (Lado et al. 

2018). This study by Lado et al. further identified 4 morphotypes comprising specimens 

defined as A. maculatum or A. triste, based on subtle morphological differences among 

populations from North, Central and South America. Based on this analysis, Amblyomma 
ticks from southern Arizona represent a unique morphotype, distinct from type specimens of 

A. maculatum sensu stricto (s. s.) and A. triste s. s.

To further characterize the identity of the Amblyomma maculatum group ticks in the 

southwestern United States, we performed a crossbreeding experiment to evaluate the 

reproductive compatibility of these ticks with A. maculatum s. s, to better determine if 

these represent the same or separate biological species.

Materials and Methods

Tick collection

Questing adult A. maculatum s. s. were collected from Panola Mountain State Park in 

Rockdale County, Georgia, USA on 5 July and during 18–19 July 2017. Questing adult 

A. maculatum group ticks (heretofore designated as A. maculatum sensu lato (s. l.)) 
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were collected from San Pedro Riparian National Conservation Area in Cochise County, 

Arizona, USA on 14 July 2017. Ticks were collected as questing specimens from vegetation 

using flannel cloth flags and were transported live to CDC, where they were identified 

morphologically using standard taxonomic keys (Estrada-Peña et al. 2005). Specimens were 

rinsed with a solution of water and liquid dish soap and separated by sex into individual 12 

× 75 mm polystyrene tubes in groups of 10 as previously described (Levin and Schumacher 

2016).

Crossbreeding Assessments

All animal studies were performed according to the protocol 2904LEVRABC approved by 

the Institutional Animal Care and Use Committee of the Centers for Disease Control and 

Prevention and the previously published manual for maintenance of ixodid ticks (Levin 

and Schumacher 2016). Throughout the study, individual naïve 4-month-old female New 

Zealand white rabbits (Oryctolagus cuniculus) were utilized to feed each cross. The rabbits 

were infested at the same time and were housed in separate cages in the same room to 

minimize potential environmental variances. Infested rabbits were checked daily for dead, 

detached, or replete ticks. There was no co-feeding of different crosses on the rabbits, and 

experimental rabbits were humanely euthanized after the completion of each feeding.

For the initial F0 adult cross, groups of 24 unfed virgin Amblyomma females from Georgia 

or Arizona were placed in individual stockinette feeding bags on the shaved dorsa of the 

rabbits along with 24 males from either Georgia or Arizona, with one bag per rabbit. This 

created two homologous (GA ♀/GA ♂ and AZ ♀/AZ ♂) and two heterologous (GA ♀/AZ 

♂ and AZ ♀/ GA ♂) breeding crosses. This parental F0 generation of ticks was allowed to 

feed to repletion, at which point detached replete females were weighed individually, and the 

duration to engorgement was recorded for each female. Attached males were removed with 

forceps on the day the last replete female detached. The detached males and all previously 

collected dead ticks were cleaned with water and liquid dish soap to dislodge any external 

contaminants and isolated in individual cryovials for morphological analysis.

Replete gravid females were placed in individual 11.1 ml polystyrene containers and 

maintained in a high humidity incubator (Levin and Schumacher 2016) under identical 

conditions of 90 % humidity, 22 ℃, and a 16/8 light/dark photoperiod. The females were 

monitored daily to assess for oviposition. The pre-oviposition period was determined by 

calculating the number of days between the day the replete females detached and the day 

oviposition started. Eggs were removed daily from the ovipositing females and placed into 

a separate 11.1 ml polystyrene tube which was maintained in the same incubator with the 

laying females. At the end of oviposition, egg mass weight corresponding to each female 

was recorded. To quantify the ability of each replete female to convert its bloodmeal to 

eggs, a bloodmeal conversion index (BMCI), was calculated by dividing the weight of 

the complete egg mass by the engorgement weight of the corresponding replete female. 

Evidence of larval eclosion for each egg clutch was monitored daily, and an incubation 

period was calculated as the difference between the date the female began oviposition and 

the date the first larvae were detected in the clutch. Hatching success was estimated as 
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previously described (Drummond et al. 1973) and recorded as successful for those egg 

clutches that exhibited over 90% eclosion.

For the larval feedings, four entire F1 larval cohorts from each of the F0 parental crosses 

were placed in separate labeled stockinette bags on naïve rabbits. Larval cohorts were 

selected for placement based on highest observed percentage of hatching. Larvae were fed in 

parallel on separate rabbits in individual cages in the same room under identical conditions, 

as described previously. Replete and dead larvae were removed daily using a vacuum pump 

system (Levin and Schumacher 2016). The first 2000 replete larvae in each cohort to detach 

were cleaned with water and liquid dish soap and separated into groups of 100 specimens 

into each of twenty 11.1 ml polystyrene tubes. Larvae were monitored daily and molting 

success for each larval cohort was recorded. If mold appeared at any point during the molt, 

the affected tube was removed and placed in a separate incubator under the same conditions 

as the non-moldy larvae. Moldy larvae were subsequently excluded from analyses of the 

molting success.

Molted F1 nymphs were allowed to feed on rabbits as described previously. Cohorts of 

350 F1 nymphs each were placed in three separate bags on naïve rabbits, comprising a 

total of 1,050 nymphs per rabbit. Nymphs from each cross were fed in parallel on separate 

rabbits in individual cages in the same room under identical conditions. Replete nymphs 

were removed daily by vacuum pump. The replete nymphs were cleaned with water and 

liquid dish soap and separated into groups of 10 in separate 12 × 75 mm polystyrene tubes. 

Feeding success was evaluated as the percentage of nymphs that fed to repletion in each bag. 

Replete nymphs were monitored daily for eclosion, and molting success for each nymphal 

cohort was recorded.

Twenty-four resultant F1 females from each cross were placed on a separate naïve rabbit 

paired with 24 males from the same cross to assess their fertility and fecundity. Ticks were 

placed at approximately 24 days post-molt. Males and females were selected from separate 

genetic lineages within crosses to limit potential inbreeding. Females were allowed to 

feed to repletion, and survival parameters of feeding duration, engorgement weight, BMCI, 

preoviposition period, and hatching success of the F2 eggs were measured as described 

above. Males were removed after females had fully engorged and were subsequently cleaned 

with water and liquid dish soap and placed into individual cryovials for morphological 

analysis.

Morphology

Morphological analysis of the experimental ticks was performed qualitatively. The gross 

morphologies of the adult F0 parental ticks as well as the adult F1 homologous cohorts and 

hybrid ticks were analyzed using a Zeiss Stemi 305 dissecting microscope and compared 

to the four morphotypes presented in Lado et al. 2018. Prominent characters were assessed 

against the descriptions provided by Lado et al., with a primary focus on the tibial armatures 

on legs II-IV of both male and female specimens as well as the spiracular plates in male 

ticks.
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Statistical Analyses

Linear regression was used to evaluate differences among crosses for the continuous 

fecundity variables: female feeding duration, engorgement weight, preoviposition period, 

egg mass, and minimum incubation period to eclosion. Crosses were compared using 

differences of mean (95% CIs) estimated from the regression fits and utilizing sandwich 

estimators of variance in multiple comparisons to account for heteroscedasticity (Bretz et al. 

2011).

Logistic regression was used to evaluate differences among crosses for binary fecundity 

variables: female feeding success, percentage of replete females ovipositing, hatching 

success, and female-to-male ratio. Models were fit using the Firth correction, and 

sandwich estimators were used to account for heteroscedasticity in multiple comparisons 

of differences (95% CIs) between log odds.

To evaluate differences in blood meal conversion indices (BMCI), which range 0 to 1, an 

arcsine transformation was used on the outcome BMCI before employing linear regression 

to evaluate differences among crosses.

Data were also collected on larvae and nymphs: larval molting success, nymphal feeding 

success, and nymphal molting success. Logistic regression fit using the Firth correction 

was used to evaluate differences among F1 generation crosses, and sandwich estimators 

of variance were used in multiple comparisons to account for heteroscedasticity among F1 

crosses.

Results

F0 → F1 Generations

The F0 cohorts fed successfully on their respective rabbits. For both homologous cohorts, 

23/24 female ticks fed to repletion; one female from the Georgia homologous cohort 

only partially fed before being removed on day 15 post infestation and one female from 

the Arizona homologous cohort died four days post infestation. Biological parameters 

for these four cohorts were very similar, though females from AZ completed their 

repletion approximately two days faster than those from GA, regardless if they mated with 

homologous or heterologous males (Table 1). There was no significant difference in duration 

to engorgement among F0 cohorts based on the origin of the female and irrespective of the 

origin of the male, or among engorgement weight of the F0 females across the four cohorts 

(range 0.84 – 0.94 g). Similarly, there were no significant differences in weights among egg 

clutches from F0 females, which ranged from 0.50 g – 0.55 g. The blood meal conversion 

indices for these ticks ranged from 55.7 – 58.7 % and were not significantly different for any 

of the cohorts. The GA ♀/AZ ♂ egg clutches hatched approximately two days more quickly 

(34.3 days) than the reciprocal cross (36.5 days), which did not vary significantly from the 

homologous cohorts (Table 1).

Molting success of the fed F1 larvae from all four cohorts was 93.5 – 98.0% (Table 2). The 

molting successes of the heterologous cohorts did not differ from each other or from the 

homologous cohorts, however the two homologous cohorts showed a significant difference 
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in molting, with a greater degree of molting success in the AZ ♀/AZ ♂ cohort (Table 2). 

Nymphal feeding success was similar for three of the four F1 cohorts, however the nymphs 

from the Georgia F1 homologous cohort fed at a much lower success rate (56.3%) than the 

other three (83.7 – 88.7%). The molting success of the F1 nymphs was greater than 95% 

(range 95.4 – 99%) for all but the F1 Georgia homologous cohort (94.9%), and the ratio of 

females to males ranged from 1.19 in the Arizona F1 homologous cohort to 1.71 in the F1 

AZ ♀/GA ♂ cohort (Table 2).

F1 → F2 Generations

The first attempt to cross the F1 adult hybrids in February 2018 ended early due to two 

of the experimental rabbits developing a clostridial infection unrelated to the crossbreeding 

study. The data collected in this feeding were subsequently excluded from the statistical 

analyses in Table 1. The rabbits infested with the AZ ♀/AZ ♂ F1 homologous cohort and the 

GA ♀/AZ ♂ F1 hybrid cohort were euthanized nine days after tick placement. At the time 

of euthanasia, nine replete females had been collected from the AZ ♀/AZ ♂ F1 homologous 

cohort and no replete females had been collected from the GA ♀/AZ ♂ F1 hybrid cohort. 

These ticks as well as all partially engorged ticks removed from these two rabbits were 

cleaned and separated into individual 11.1 ml polystyrene tubes to allow for oviposition. All 

nine of the fully engorged ticks from the AZ ♀/AZ ♂ F1 homologous cohort laid eggs, as did 

13 of the 16 partially engorged females removed from the euthanized rabbit. All of these egg 

clutches hatched at a rate of >90%. Eight of the partially engorged ticks from the GA ♀/AZ 

♂ F1 hybrid cohort laid a small clutch of eggs, however none of the eggs from this cohort 

hatched.

The remaining two healthy rabbits infested with the GA ♀/GA ♂ F1 homologous cohort 

and the AZ ♀/GA ♂ F1 hybrid cohort continued in the experiment. Seven of the ticks 

from the GA ♀/GA ♂ F1 homologous cohort came off the rabbit into the cage and were 

damaged when the rabbit broke its hobble and scratched the bag open eight days into the 

experiment. None of these seven ticks laid eggs. The remaining 17 females of the GA ♀/GA 

♂ homologous cohort fed to repletion and laid egg clutches, all of which hatched at a rate 

of >90%. Twenty of the 24 AZ ♀/GA ♂ F1 hybrid cohort females fed to repletion. The 

remaining four female ticks were removed on day 17 post infestation. All 20 of the replete 

hybrid females laid eggs. No hatched larvae were detected until day 52 post oviposition, 

when 4 individual F2 larvae were detected in a single egg batch. These 4 hybrid larvae were 

sluggish and died within 24 hours after hatching.

The F1 adult feeding was repeated in late March 2018 with 20 pairs of ticks per rabbit as 

opposed to the 24 pairs that were fed in February. Only data collected during this second 

attempt were used to calculate the statistics in Table 1. Additionally, F1 GA ♀ /AZ ♂ ticks 

were excluded from all generation-cross group analyses with the exception of adult female 

feeding success. The low sample size of this generation-cross group following feeding lacks 

sufficient information to yield reliable results.

All of the females from the GA ♀/GA ♂ F1 homologous cohort fed to repletion within an 

average of 10.4 days and laid egg clutches which hatched at a rate of >90%. The females 

from the AZ ♀/AZ ♂ F1 homologous cohort all fed to repletion within an average of 10.1 
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days, and 19/20 laid egg clutches which hatched at a rate of >90%. The single female in 

this cohort that did not oviposit was damaged during cleaning and then discarded. There was 

no significant difference between the feeding duration of the F1 homologous cohorts as was 

seen in the F0 feeding; the F1 AZ ♀/AZ ♂ homologous cohort fed similarly to both the F0 

and F1 GA ♀/GA ♂ homologous cohorts (Table 1). The egg clutches for the Georgia and 

Arizona F1 homologous cohorts weighed an average of 0.57 and 0.55 g respectively and 

were not significantly different from any of the other F0 or F1 cohorts.

The GA ♀/AZ ♂ F1 hybrid cohort began engorging at approximately the same time as the 

homologous cohorts, however most of the ticks stopped engorging by day 7 post infestation. 

The cuticle of the attached partially engorged ticks appeared dry and leathery. All attached 

females on the rabbit were paired with a male, however only two replete females were 

collected: one on day 12 post infestation and one on day 13. On day 16 post infestation, the 

rabbit housing these ticks was humanely euthanized and 18 partially engorged ticks were 

removed. The two replete females and 6/18 partially engorged females from this cohort laid 

egg clutches. However, none of these F2 hybrid eggs hatched (Table 1).

Adult ticks from the AZ ♀/GA ♂ F1 hybrid cohort appeared to feed better than the reciprocal 

hybrid cohort, with 14/20 replete females detaching within two weeks post infestation; 

however, this cohort fed to repletion at an average of 12.1 days, a significant difference of 

approximately two days longer when compared to the homologous cohorts. The remaining 

six partially engorged females were removed from this rabbit when it was euthanized on day 

16 post infestation. All 14 of the replete females and 3/6 of the partially engorged females 

from this cohort laid egg clutches. However, none of these F2 hybrid eggs hatched (Table 1).

A final attempt was made in June 2018 to determine if the GA ♀/AZ ♂ F1 hybrid cohort 

would engorge. Ten female and 10 male F1 hybrid ticks were placed on a naïve rabbit. 

Because this was an attempt to qualitatively verify whether or not these ticks would engorge, 

there was no homologous control group fed at the same time. The ticks were visually 

inspected once attached to ensure that the females were paired with males. After 14 days, 

no females had fed to repletion, and all of the attached partially engorged females appeared 

pale and leathery. The rabbit was humanely euthanized on day 15 post infestation, and the 

partially engorged ticks were removed and saved for morphological analysis.

Morphological evaluation

All homologous adults from the F0 generation (24 ♀ and 24 ♂ from each cross) and 80 

from each F1 cohort (40 ♀ and 40 ♂ from each cross) were examined using a dissecting 

microscope and compared to the morphotypes described in Lado et al. (Lado et al. 2018). 

The F0 adults were analyzed post feeding. The descriptions of the morphotypes for each 

homologous cohort generally matched the respective observed morphology of the ticks. 

The tibial armatures on legs II-IV of the ticks from Arizona were consistently of unequal 

thickness. The Arizona male spiracular plates were consistently comma shaped, and the 

female specimens all contained a central brown spot that reached the posterior margin of 

the scutum (Figure 1, d – f). The A. maculatum s. s. ticks from Georgia were uniformly 

consistent with classic descriptions of this species, with tibial armatures on legs II-IV of 

equal thickness, comma shaped spiracular plates in males, and central brown spots that often 
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do not reach the posterior margin of the scutum (Figure 1, a – c) (Kohls 1956, Camicas et al. 

1998, Estrada-Peña et al. 2005, Lado et al. 2018).

For the hybrid cohorts, examination of 80 F1 adult hybrid ticks (40 ♀ and 40 ♂) from 

each cross revealed a mix of morphotypes and rarely matched 100% with any single group. 

Among the 80 female AZ ♀/GA ♂ F1 hybrids examined, 67 (83.8% (74.1, 90.3%, α = 0.05)) 

had a brown central scutal area that reached the posterior margin of the scutum as in the 

description for the Arizona A. maculatum s. l. (morphotype III) (Figure 1, j), and 13 (16.3% 

(15.9,16.5)%, α = 0.05)) demonstrated scutal coloration defined by a brown central area 

that did not reach the scutal posterior edge, as in the description for A. maculatum s. s. 

(morphotype II) (Figure 1, g).

Hybrid males possessed comma-shaped spiracular plates as described for A. maculatum s. l. 

(morphotype III) (Figure 1, i and l). The tibial armatures for male and female hybrids were 

consistently of unequal thickness, though there was a range of thicknesses of the smaller 

spur, similar to those identified for both the Arizona A. maculatum s. l. (morphotype III) and 

A. triste s. s. (morphotype I) (Figure 1, h and k).

Discussion

In the 175 years since Koch first described Amblyomma maculatum, there has been no 

consensus reached on how to easily define ixodid tick species (Dantas-Torres 2018, Goddard 

et al. 2019). While morphology is arguably the most practical tool in separating specimens, 

the characters that distinguish valid tick species are often subjective and difficult to decipher 

for even trained entomologists. This can become nearly impossible when trying to identify 

immature stages; nymphs and larvae of A. maculatum s. s. and A. triste s. s. are rarely 

collected and are not readily distinguished using contemporary morphological keys (Mertins 

et al. 2010, Mukherjee et al. 2014, Cohen et al. 2015). Molecular analysis can be an effective 

tool to separate valid species and identify potentially cryptic species, however a biological 

approach is perhaps the most robust method of elucidating species relationships in Ixodidae 

(Goddard et al. 2019).

The most basic principle of the biological species concept is reproductive isolation, or an 

accumulation of reproductive isolating mechanisms sufficient to prevent successful gene 

flow between two populations of closely related organisms (Mayr 1970). This principle 

has been used to verify species identities within ixodid ticks through crossbreeding 

experiments many times before. Interspecific studies between Dermacentor variabilis 
(Say), D. occidentalis Marx, and D. andersoni Stiles (Oliver et al. 1972), Rhipicephalus 
(Boophilus) microplus (Canestrini) and Rh. (Boophilus) decoloratus (Koch) (Spickett and 

Malan 1978), and D. marginatus Sulzer and D. reticulatus (Fabricius) (Zahler and Gothe 

1997) produced no viable F1 hybrids. Similar interspecific crossbreeding analyses between 

the Ixodes ricinus (Linnaeus) – I. persulcatus Shulze complex (Balashov et al. 1998) and 

Rh. (Boophilus) annulatus (Say) and Rh. (Boophilus) microplus (Canestrini) (Graham et al. 

1972) produced infertile F1 hybrids. In both cases, these studies support the validity of these 

taxa as separate species.
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Intraspecific analyses have also been conducted to test conspecificity, such as between 

the tropical and temperate lineages of Rh. sanguineus (Latreille) (Levin et al. 2012) and 

geographically distinct populations of Rh. (Boophilus) microplus (Labruna et al. 2009), 

Amblyomma cajennense (Fabricius) (Labruna et al. 2011), temperate Rh. sanguineus s. l. 

(Dantas-Torres et al. 2018), and Amblyomma parvum Aragão (Nava et al. 2016). With the 

exception of A. parvum and temperate Rh. sanguineus s. l., all of these intraspecific analyses 

resulted in reproductive incompatibility, to suggest that the taxa represent multiple biological 

species.

In the present study, A. maculatum s. s. from Georgia and A. maculatum s. l. from Arizona 

effectively hybridized when placed together on animals in a laboratory setting. However, 

these F1 hybrids did not produce fertile progeny and were unable to establish an F2 

generation. Though the F1 hybrids readily recognized each other as mates, they exhibited 

diminished fitness, most notably seen in the GA ♀/AZ ♂ cohort’s apparent inability to feed 

to repletion across multiple attempts. It is thus likely that one or both of the F1 hybrid sexes 

is infertile.

Hybrid sterility serves as a postzygotic reproductive isolating mechanism to prevent 

the exchange of genes between populations, thus preserving the genetic integrity of 

species. Almost invariably, hybrid sterility follows Haldane’s rule of scarcity, preferential 

impairment, or infertility of the heterogametic sex (Haldane 1922). In Amblyomma species, 

as in most ixodid ticks, males are heterogametic (Oliver 1989) and would be expected to be 

rare or infertile if Haldane’s rule holds true. Such was the case in the attempted crosses of 

Amblyomma americanum (Linnaeus) with A. maculatum s. s. and Amblyomma variegatum 
(Fabricius) with Amblyomma hebraeum Koch performed by Gladney and Dawkins in 1973 

and Clarke and Pretorius in 2005, respectively. In the first experiment, only the cross of 

A. maculatum s. s. males and A. americanum females produced F1 offspring, all of which 

were female (Gladney and Dawkins 1973). The second study showed similar results, with 

the cross of male A. variegatum and female A. hebraeum producing F1 progeny that were 

entirely female (Clarke and Pretorius 2005). In the work shown here, 5/6 of the individual 

F1 hybrid lineages produced more females than males at ratios from 1.05 – 1.96, with the 

highest female-to-male ratio in the AZ ♀/GA ♂ hybrid cohort. This cohort is significantly 

different from the F1 homologous cohorts, although the homologous cohorts also exhibit 

female-to-male ratios over 1 (Table 2). Nonetheless, we did not cross F1 hybrid males with 

F1 homologous fertile females, so it remains uncertain if Haldane’s rule of sterility applies. 

Similarly, without performing the reciprocal cross of the F1 hybrid females with fertile F1 

homologous males, we cannot know if the hybrid females are potentially the sterile sex.

The two allopatric populations of A. maculatum group ticks presented here lack the genetic 

divergence necessary to be classified as separate species (Lado et al. 2018). The adults can 

be separated morphologically, but the characters to do so are slight and somewhat subjective. 

There is inevitably a gradient of morphological variation within populations of individual 

species, and although the few characters that separate A. maculatum s. s. and A. maculatum 
s. l. might otherwise be attributed to this gradient, our observation of reproductive isolation 

past the F1 generation precludes consideration of these disjunct populations as a single 

biological species (Mayr 1970). However, while the two populations of ticks in this study 
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from southern Arizona and Georgia appear to represent distinct biological species, more 

work is required to accurately determine the taxonomic status of A. maculatum s. l. ticks 

identified in the American southwest, including crossbreeding experiments with A. triste s. 

s. from South America. Investigations into variable markers such as microsatellites could 

further provide clarity to the species relationships between these and other populations 

within the Amblyomma maculatum group (Fagerberg et al. 2001). As more cases of R. 
parkeri rickettsiosis are identified (Yaglom et al. 2020) and the recognized range of this 

pathogen’s Amblyomma vector extends in the southwestern United States (Hecht et al. 

2020, Paddock et al. 2020), it is vital to determine whether the ticks in this region represent a 

previously described or a unique species.
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Fig. 1. 
Images of the morphology of the scutum, armatures on tibiae II – IV, and male spiracular 

plates for the GA ♀/GA ♂ (a – c), AZ ♀/AZ ♂ (d – f), GA ♀/AZ ♂ (g – i), and AZ ♀/GA ♂ (j 

– l) F1 adults
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Table 2.

Summary of the F1 nymphs and larvae, including nymphal feeding success, larval and nymphal molting 

success, and female-to-male ratio. Superscripts that differ indicate significant statistical difference between 

crosses.

Homologous Cohorts Heterologous Cohorts

GA ♀ / GA ♂ AZ ♀ / AZ ♂ GA ♀ / AZ ♂ AZ ♀ / GA ♂

n = 2765 n = 4997 n = 1410 n = 3700

Larvae molting success (%) 93.5 (92.5, 94.4)a 97.3 (96.8, 97.7)b 93.7 (92.3, 94.8)a,b 98.0 (97.4, 98.4)a,b

n = 1050 n = 1050 n = 1050 n = 1050

Nymph feeding success (%) 56.3 (53.3, 59.3)a 88.7 (86.6, 90.4)b 83.7 (81.4, 85.8)b 87.7 (85.6, 89.6)b

Nymph molting success (%) 94.9 (92.8, 96.4)b 98.0 (96.9, 98.7)a,b 95.4 (93.9, 96.6)a,b 99.0 (98.2, 99.5)a

Female-to-male ratio 1.20 (1.02, 1.42)a,b 1.19 (1.04, 1.36)a 1.20 (1.05, 1.38)a,b 1.71 (1.50, 1.96)b
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